Prospects for Low-x Physics at RHIC

This is not a talk on an electron-ion collider. This is a talk about how improved experimental instrumentation at RHIC can extend kinematic reach to low-x. Such improvements have impact on measurements sensitive to high gluon densities in heavy-ion physics and on determining the polarization of gluons to low-x for spin physics.

L.C.Bland
Brookhaven National Laboratory
POETIC-7 Workshop, Temple University
15 November 2016

p+p→jets, \sqrt{s} =200 GeV

arXiv:1506.06314

RHIC and midrapidity

- Sophisticated mid-rapidity detectors have delivered a wealth of information about QCD in p+p, p+A, and A+A collisions
- Jet cross sections in p+p collisions at √s=200 GeV compare well to global analyses of parton distribution functions [arXiv:1506.06314]
- Many other examples can be provided

Low-x at RHIC

RHIC as a Polarized Collider

- Helicity asymmetry for inclusive jet production at midrapidity is measured as a function of p_T.
- Measurements are sensitive to <x>~2p_T/√s

arXiv:1405.5134 PRL 115 (2015) 092002HIC

Gluon Polarization

Large Uncertainty in Low-x Gluon Contribution to Proton Spin

de Florian, Sassot, Stratmann, Vogelsang PRL 113 (2014) 012001 / arXiv:1404.4293

- Spin decomposition of proton: $\frac{1}{2}=\frac{1}{2}\Delta\Sigma+\Delta G+L_q+L_g$ [arXiv:1309.4235] in terms of quark and gluon spin and orbital angular momentum
- In measured range of x [midrapidity], global analysis [arXiv:1404.4293] of world data determines ΔG =0.20±0.06 for x>0.05 at Q²=10 GeV²
- For x<0.05, little is known experimentally until an EIC
- RHIC can still make measurements sensitive to gluon polarization down to $x^{-10^{-3}}$ with forward instrumentation

Forward Particle Production

- In this talk, forward means when the observed particle Feynman-x ($x_F=2p_z/\sqrt{s}$) scaling variable is larger than 0.1
- In general, sufficient p_T is required so that pQCD is applicable. Consequently, forward is further defined to require sufficient p_T [which looks to be ~2 GeV/c for inclusive π^0 production]
- RHIC interaction regions have uniquely large length for a collider, when scaled by \sqrt{s} . This interaction length does permit space for forward instrumentation

	Free Space (m)	√s (GeV)	Ratio (L/vs)
Tevatron	13	1600	0.0081
LHC	38	13000	0.0029
RHIC	16	500	0.032
	16	200	0.080

Consider the separation in x-y plane $(d_{\gamma\gamma})$ of a pair of photons from the decay $M \rightarrow \gamma\gamma$, when the plane is L from where M (mass m_M) is produced:

$$d_{\gamma\gamma}^{min} = \frac{L}{\sqrt{S}} \frac{4m_M}{x_F}$$

⇒ Large L/ \sqrt{s} enables reconstruction of light mesons to large x_F at large \sqrt{s}

Why is large x_F useful?

For inclusive production via hard scattering (2 \rightarrow 2 processes), $x_F^{\sim}x_1 - x_2$, where x_1 is the Bjorken x of the parton from the hadron heading towards the apparatus and x_2 is the Bjorken x of the parton from the other colliding hadron. In general, forward particle production probes these x values at "low scale" (as set by p_T). Distributions are for inclusive forward jets.

p+p, √s=510 GeV, PYTHIA 6.222/GEANT, tower jets $0.2 \le x_f \le 0.25$ 2000 1000 400 $0.3 < x_f < 0.35$ 300 200F 100 $0.4 < x_f < 0.45$ 60

 $log_{10}(x_{B2})$

Low-x at RHIC x_2 is broad, but extends to very low x (~few $\times_6 10^{-4}$). Forward dijets can select low x (see below)

20

 $_{11/15/2016}$ Valence-like quarks for $x_F > 0.1$

Forward Dijets

Reconstruction of >1 jet in the forward direction can emphasize hard-scattering contributions from lox-x gluons

Examples of why this is important are

- Extending probes of gluon polarization to low-x by measurement of longitudinal double-spin asymmetries
- Sensitivity to low-x gluons in heavy ions

Proposals for Forward Upgrades at RHIC

- Forward sPHENIX see http://www.phenix.bnl.gov/phenix/WWW/publish/dave/sPHENIX/pp_pA_whitepaper.pdf
- STAR Forward Detector Update see arXiv:1602.03922 and E. Aschenauer talk in session 4B
- Forward Calorimeter at STAR described below following Outline
 - Prior use of FCal at RHIC forward jet and dijet cross sections
 - Tests of FCal at STAR and with test beam at FermiLab
 - Proposal for installation

Prior Experience with Forward Calorimetry

A_NDY Setup at IP2 for 2011 RHIC Run

2m x 1.2m forward calorimeter 236 x (10cm)² x 117-cm cells

- Beam-beam counter (BBC) for minimum-bias trigger and luminosity measurement (from PHOBOS [NIM A474 (2001) 38])
- Zero-degree calorimeter and shower maximum detector for luminosity measurement and local polarimetry (ZDC/ZDC-SMD, not shown)
- Hadron calorimeter (HCal) are L/R symmetric modules of 9x12 leadscintilating fiber cells, (10cm)²x117cm (from AGS-E864 [NIM406(1998)227])
- Small ECal 7x7 matrices of lead glass cells, (4cm)²x40cm (loaned from BigCal at JLab)
- Preshower detector two planes, 2.5
 & 10 cm
- In 2012, modular calorimeters were replaced by an annular calorimeter with (20cm)² hole for beams

Calibrations-I

PLB 750 (2015) 660

Electromagnetic Response / Calibrate via $\pi^0 \rightarrow \gamma \gamma$

- Cosmic-ray muons were used to adjust relative gains in advance of collisions (see backup)
- The primary determination of the energy scale was from reconstruction of $\pi^0 \rightarrow \gamma\gamma$ from single-tower cluster pairs. The maximum energy for this calibration was limited by photon merging into the coarse (10 cm)² towers. [See below for pixelization results from this same calorimeter]
- Full PYTHIA/GEANT simulation agrees with data, for both the pair-mass resolution of the calorimeter, as well as the neutral pion reconstruction efficiency.
- Subsequent test-beam studies at FNAL [T1064] are consistent with an excellent response of this calorimeter to incident photons and electrons.

Calibrations-II

- Use BBC detector to tag HCal clusters made by incident charged hadrons. Mass assignments are then made.
- Tagged cluster-pair mass distributions are consistent with $\Lambda \to \pi^- p$ (left) and K*(892) $\to \pi^+ K^-$ (right) and charge conjugates
- Use E=1.12E'-0.1 GeV for jet finding from an event list of tower energies that use the photon calibration (E')

Jet Reconstruction — Anti-k_⊤ Jet Finder

Trigger on HCal masked ADC Sum in L/R Modules Display anti-kT jet clusters satisfying acceptance cuts

Run=12107004.001, trig=Jet, Event=15, mod=2, anti- $k_{\rm T}$

• Anti-k_T Jet Finder Procedure :

- Iteratively merge pairs of towers until towers cease to satisfy distance criteria
 - No Seed
 - Towers can be outside trigger region
- Distance Criteria (clusters j,k) :

•
$$d_{jk} = min(k^{-2}_{Tj}, k^{-2}_{Tk})(R^{2}_{jk}/R^{2})$$

•
$$R^2_{jk} = (\eta_j - \eta_k)^2 + (\Phi_j - \Phi_k)^2$$

- If $d_{jk} < k^{-2}_{Tj}$ then merge clusters j,k
- Use cone with R_{jet} = 0.7 in η-Φ space but cluster towers can fall outside of cone
- Impose acceptance cuts to accept/reject jet:

$$|\eta_J - 3.25| < 0.25$$

 $|\Phi_J - \Phi^{Off}| < 0.50$
where $\Phi^{Off} = 0$ for HCL
 $\Phi^{Off} = \pi$ for HCR

Energy Cut: E_{iet} > 30 GeV

• Algorithm: arXiv: 0802.1189 arxiv: 1209.1785

Comparison of Data to PYTHIA 6.222/GEANT Simulation

Uncorrected p_⊤ distribution of anti-kT clusters

Uncorrected multiplicity of towers in anti-kT cluster

PLB 750 (2015) 660

What is a forward jet?

Event averaged jet shape: how the energy is distributed a distance R in η , ϕ from the thrust axis

⇒ the anti-kT clusters have shapes similar to midrapidity jets

(left) tower multiplicities, as used for A_N ; (middle) tower multiplicities, as used for σ ; (right) incident particle multiplicity from simulation

⇒ multiplicity similar to jets of comparable scale

Acceptance of contained jets from particles with 2.4< η <4.2 correlates x_F and p_T for the jet cluster

16

11/15/2016 Low-x at RHIC

Jet Energy Scale - I

- Simulations confirm energy scale of jets, by comparison of "tower" jets [with full detector response] to "particle" jets [excluding detector response].
- Reconstructed jets are directionally matched to hardscattered partons as generated by PYTHIA

Correlation between tower jet [from PYTHIA/GEANT] to particle jet [from PYTHIA]. The inset shows the η component of the directional match ($\Delta\eta$) between particle jets and a hard-scattered parton, whose direction is defined by η parton, ϕ parton. There is a 82% match requiring $|\Delta\eta|$, $|\Delta\phi|$ <0.8

Jet Energy Scale - II

PLB 750 (2015) 660

- Test jet energy scale by reconstruction of invariant mass for multi-jet events
- Observe 3.5σ statistical significance peak, attributed to Υ(1S)→3g. The red overlay is a simulation of the signal from the PYONIA generator of Υ(1S)→3g, run through GEANT, and then reconstructed as done for the data
- For the inset, S rescales the energy calibrations, so tests the jetenergy scale.
- Peaks are also observed in 2-jet mass attributed to $\chi_{2b} \rightarrow 2$ gluons. Peaks in N-jet events require large multiplicity [ΣQ from beam-beam counter] ~7 units of rapidity away from dijet [aXiv:1308.4705]

Forward Jet Cross Sections

PLB 750 (2015) 660

- Uncertainties include both statistical and systematic estimates [as described in backup]
- Strong dependence on both x_F and p_T requires data/theory comparisons at $<\eta_{iet}>$
- NLO pQCD [PRD 86 (2012) 094009] calculation provides a good description of the data using CTEQ6.6M PDF. Note the small scale dependence [band represents range of scale from μ =2p $_{\rm T}$ to μ =p $_{\rm T}$ /2]
- Leading-order pQCD model calculation assuming factorization in the use of k_T dependent distribution functions [generalized parton model (GPM), PRD 88 (2013) 054023] also describes the data. The larger scale dependence is likely a consequence of a leading-order calculation
- Particle jet reconstructions [no detector effects beyond acceptance] with the anti-kT algorithm with R_{jet} =0.7 are used to compare default PYTHIA 6.222 [prior to tunings for the LHC] and PYTHIA 6.425 ["Field tune A"] to data. PYTHIA 6.222 was previously found to describe forward π^0 production at \sqrt{s} =200 GeV [arXiv:hep-ex/040312].

Test of Dijet Corrections

Comparison of corrected PYTHIA/GEANT tower dijets to PTYHIA particle dijets

$$p+p \rightarrow dijets$$
, $\sqrt{s}=510 \text{ GeV}$

- It is found that the dijet $\varepsilon_{trig}(V)$ [for V=M,k_T,p_z] is the only correction required; i.e., $\varepsilon_{det}(V)$ =1
- The dijet correction procedure when applied to PYTHIA/GEANT tower dijets reproduces the input PYTHIA particle dijets (animate for V=k_T and p_z distributions)
- Require M>4 GeV/c² when reporting dσ/dk_T and dσ/dp_z.

PYTHIA Tunings

- The LHC high-energy program has prompted many retunings of PYTHIA, so that backgrounds in e.g. dijet mass are well modeled to allow new particle searches. See P.Z. Skands, PRD 82 (2010) 074018 [arXiv:1005.3457]
- PYTHIA tunings most commonly adjust initial-state and final-state showering parameters; multi-parton
 interaction model parameters; etc. As will be shown, inclusive forward jets and forward dijets from RHIC are
 sensitive to these tunings [as should be expected, since the rapidities involved for forward dijets at RHIC rival
 those from midrapidity at the LHC]
- In general, any serious low-x physics study of forward particle production will need to deal with the physics of parton showers and multi-parton interactions. It is not good to attempt to "correct" measurements for these effects. Experimental results should report what's observed, rather than subtracting model-dependent quantities from what is measured [in my opinion...]

Data versus Atlas [AUET2B with CTEQ10] Tune

- This is AUET2B-CT6L as developed by Atlas [arXiv:1512.00197 / PLB 756 (2016) 10], replacing the PDF by CTEQ10 [which differs from CTEQ6 for low-x gluons]
- Reasonable description of inclusive jet data
 - ~20% overprediction of dijet data

Extending Gluon Polarization Measurements to Low-x

- Installation of forward calorimetry that combines good electromagnetic and hadronic responses at STAR or PHENIX can allow measurement of A_{11} for forward dijet production at $\sqrt{s}=510$ GeV.
- Careful evaluations of global analyses [arXiv:1407.4176] leads to expectations that $A_{LL}^{\sim}10^{-3}$ for forward dijets in p+p collisions at \sqrt{s} =510 GeV, which can be measured with both statistical and systematic significance in a future RHIC run.
- The basic requirements to extend gluon polarization measurements to low-x are a well-understood forward jet detector, high-luminosity operation of RHIC with longitudinally polarized colliding protons, and good solutions to environmental issues

Issues for Installation of Forward Calorimeter at STAR

- 2-m hole in east and west poletips of STAR solenoid provides a window to forward physics
- The 0.5-T central field in the STAR solenoid produces large (~0.01T) longitudinal magnetic fields at the location of an FCal, typically parallel to desired locations of photosensors, thereby making it difficult to shield phototubes
- Radiation effects from high-luminosity RHIC operation can impact the calorimeter and/or the photosensors [e.g. silicon photomultipliers]

We have addressed these issues in tests at STAR in 2014 and 2016

The proposed calorimeter has been tested at FermiLab in 2015

Run14 Prototype FCal

from (10cm)² cells to (3.3cm)² pixels

- ➤ Pixelizing 36 E864 cells into 324 (3.3cm)² pixels allows reconstruction of neutral pions to higher energy up to ~50 GeV
- > FCAL was stable through ³He+Au collision
- ➤ Radiation Hardness no energy re-calibration required over duration of ³He+Au running

Data vs. Simulation

- Hits/Clusters were identified using associated particles in simulation
- Dominant background is when one cluster is a photon and the other is a hadron
 - Can be effectively reduced by good pre-shower detector and additional e/h discrimination from FCal

FTBF Test Beam / T1064

- ightharpoonup Shows clean separation between e⁻ & π ⁻ shower shapes
- ➤ Hadronic shower shapes can be distinguished from EM showers with greater than 90% confidence

FTBF: Fermilab Test Beam Facility http://ppd.fnal.gov/ftbf/ 27

SiPM Irradiation Tests - 2016

- No/minimum magnetic field effects and low cost compared to PMTs
 - > But, can be subject to radiation effects
- ➤ SiPMs were illuminated by a pulsed (100Hz) blue LED light source
- > Exposed to d+Au background radiation
- > SiPM leakage current increases with time
- > Loses gain with increasing leakage current
 - ➤ Impact FCAL stability over time

Magnetic Field Test

- Dominant fringe field from the STAR solenoid and DX magnet is B_z
- ➤ Apparatus with PMT and flashing LED is placed at the east side of STAR
 - \triangleright 4.1° angle with respect to the z-axis
 - ➤ Monitored when STAR solenoid + RHIC DX magnet is excited, using network programmable oscilloscope

XP2262 (2" diameter)

- Enough space 30-mil mu-metal
- Negligible gain shift

XP2972 (1.125" diameter)

- 15% downward gain shift for 10-mil mu-metal
- Few percent gain shift for 20-mil mu-metal

Mu-metal: Ni-Fe magnetic alloy, shield static or low frequency magnetic field

Blue: XP2972

Magenta: XP2262

STAR magnet – Zero Field

Magnetic Field Test

- Dominant fringe field from the STAR solenoid and DX magnet is B_z
- ➤ Apparatus with PMT and flashing LED is placed at the east side of STAR
 - ➤ 4.1° angle with respect to the z-axis
 - ➤ Monitored when STAR solenoid + RHIC DX magnet is excited, using network programmable oscilloscope

XP2262 (2" diameter)

- Enough space 30-mil mu-metal
- Negligible gain shift

XP2972 (1.125" diameter)

- 15% downward gain shift for 10-mil mu-metal
- Few percent gain shift for 20-mil mu-metal

Mu-metal: Ni-Fe magnetic alloy, shield static or low frequency magnetic field

DX Magnet – Zero Field

Magenta: XP2262

$2.7 < -\eta < 3.7$

Drawing courtesy of John Scheblein

Proposed Location for FCal

- Edge of east tunnel opening to wide angle hall
- No modifications to east support platform required
- FCal personnel will stack calorimeter in place. Only minimal technical help is required
- Existing rack on floor of wide angle hall to the south of the beam will be used ⇒ no electrician work required
- Existing cabling from IP2 effort will get used ⇒ minimal cost
- It is required to move the vapor barrier further to the east to make room for FCal

Who is involved?

- Lehigh University Rosi Reed, Prashanth Shanmuganathan, Daniel Brown, Justin Ewigleben
- Temple University Bernd Surrow, Matt Posik
- Berkeley Hank Crawford, Jack Engelage,
 Chris Perkins, Eleanor Judd
- IHEP, Protvino Larisa Nogach
- Brookhaven Les Bland

Others welcomed! This is a great hands-on project for students.

Temple/Lehigh FCal meeting at Temple University on 11 August 2016

Broad Impact of Improved Forward Instrumentation

⇒ applications in (light) heavy-ion collisions

Forward Jets and Dijets in Cu+Au at √s_{NN}=200 GeV

 $3.0 < \eta_{\text{jet}} < 3.5$

CuAu, √s=200 GeV, jet-triggered, overlay 12173.2,1

- The jet finder is applied to a small sample of Cu+Au collisions at $\sqrt{s_{NN}}$ =200 GeV, selecting peripheral collisions. Jet tower multiplicities are similar to p+p jets of the same energy
- Jets and dijets are in the Cu beam direction
- Inclusive jets in Cu+Au collisions extend beyond 100 GeV, which exceeds Feynman-x scaling limits for N+N collisions ⇒ analogous to radial flow? and/or particle production from collective nuclear effects?

Forward Jets and Dijets in Cu+Au at √s_{NN}=200 GeV

- The jet finder is applied to a small sample of Cu+Au collisions at $\sqrt{s_{NN}}$ =200 GeV selecting peripheral collisions. Jet tower multiplicities are similar to p+p jets of the same energy
- Jets and dijets are in Cu beam direction
- Inclusive jets in Cu+Au collisions extend beyond 100 GeV,
 which exceeds Feynman-x scaling limits for N+N collision
- Forward dijets in Cu+Au collisions have strong azimuthal correlations with particles 7 units of rapidity away [analogous to CMS results (JHEP 09 (2010) 91)], as measured via total charge in beam-beam counter annulus facing Au beam
- With FCal at STAR the rapidity interval from -1< η <+4 can be examined for a near-side ridge
- Long-range rapidity correlations can be explored between a forward jet at $\eta^{\sim}\text{-}3.5$ and reconstructed neutral pions at $\eta^{\sim}\text{+}3.5$

O(E) offsets the azimuthal correlation for each $E_{\rm dijet}$ bin $_{11/15/2016}$

Low-x at RHIC

Diiet Mass in Cu+Au at √s_{NN}=200 GeV

 $Cu+Au \rightarrow dijets+X$, $\sqrt{s}=200$ GeV, all triggers

Dijet mass [assuming zero mass jets] for away-side azimuthal correlation peak

 $Cu+Au \rightarrow dijets+X$, $\sqrt{s}=200$ GeV, all triggers

Dijet mass [assuming zero mass jets] for near-side azimuthal correlation peak

36

Observe a 5 σ peak. Systematic studies still underway. Could this be a new particle?

Are These Really Jets?

Jet directions match input jet

- Embed detector response from jets from p+p at \sqrt{s} =510 GeVwith E_{jet}>120 GeV into minimum-bias CuAu events
- Reconstruct result events, and compare to input jets
- Effects are smaller when including peripheral collisions

Jet energies shifted higher than input jet

Cu+Au with embedded jets, $3000 < \Sigma Q_{Y} < 4000$, $E_{R} > 120$ GeV

Summary Prospects for Low-x Physics at RHIC

- Improved forward instrumentation can extend experimental capabilities to allow measurements to x~10⁻³ in p+p collisions at RHIC
- A prime example of applicability is to extend gluon polarization measurements at RHIC to low x
- Low-x physics with heavy-ion beams provides sensitivity to large gluon densities, and helps establish their role in forming a quark-gluon plasma

Low-x at RHIC

Forward detector upgrades also give prospects for discovery physics

38